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Tunnelling is perhaps one of the more versatile concepts of quantum theory. It may

he used in tunnelling microscopy 1, or in describing a phase transition in the universe2!

But, whatever tunnelling problem one wishes to address, all have in common the idea

that two regions of space classically separated by a potential barrier are not quantum

mechanically isolated, provided the barrier separating the two is finite. The reason is that in

the classically forbidden r_gime the probability density is non-zero, although exponentially

damped.

Such is the simple picture. In practice however, calculating a tunnelling amplitude

accurately is not so easy, except in a range of special cases, essentially one-dimensional

problems or problems which can be recast as such. Recently, in considering inflation-

ary scenarios, people have been examining models containing not only an inflaton scalar

field responsible for the false vacuum energy, but also an additional scalar field, e_ther by

extending the gravitational sector, as in extended 3 or hyperextended 4 inflation, or by in-

eluding an extra scalar field, as in double field inflation s . These ideas have in common the

notion of a single field whose tunnelling is influenced by the classical evolution of a seeond

field. This allows for a time dependent nucleation rate which resolves several problems

with the old inflationary models. To date, most calculations 4-T have involved a "freezing

out" of the second field, merely using it to provide dynamical evolution parameters in the

one-dimensional problem. Since most tunnelling calculations involve stationary state Eu-

clidean time techniques, these more complex multi-dimensional models beg the question

as to whether such techniques are really valid when there is classical evolution. The aim

of this paper is to approach this problem in a way that treats both types of evolution on

an equal footing.

In this paper, we explore this question for the test case of quantum mechanical tun-

nelling, and consider a variety of illustrative potentials. We concentrate on the stationary

phase or quasi-classical approximation, examining how, and under precisely what condi-

tions this may be applied. In particular, we try to avoid assigning Euclidean time any

preferred status, keeping it firmly in the category of an optional mathematical tool. In

dealing with this more general class of problems, we find that we have to modify the WKB

matching conditions to allow for the passage of real momentum under a barrier and com-

plex momentum beyond. This naturally increases the complexity of the process of solving

for the wave function under the barrier and beyond. We develop a method for solving

these two problems and apply it to a variety of two-dimensional examples.

The layout of the paper is as follows. We begin by reviewing the quasi-classical

approximation, and what l_mitations it places on _he type of tunnelling wave functions to

be considered. We also review the role of Euclidean time, and highlight the problems of
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trying to apply thesetechniquesto moregeneralmulti-dimensional barriers. This leadsus

to our description of the identification of turning points in WKB solutions and derivation

of appropriate matching conditions. We then solve the Schr6dinger equation under the

barrier in the stationary phase approximation. Finally, we apply our techniques to a few

simple, but illustrative, examples.

1. Tunnelling and the Quasi-Classical Approximation.

Before reviewing the quasi-classlcal approximation, we will recap on what is usually

meant by "tunnelling". Tunnelling amplitudes for scattering problems are reasonably well

defined as the ratio of the amplitudes of the emergent and incident wave functions. For

'stationary' problems (a particle 'tunnelling' from one well or channel to another) we will

consider a particle to be tunnelling out of its initial well if the probability of finding it in

that well or channel goes predominantly as e -rt/a. r is the tunnelling amplitude.

Now let us review the quasi-classlcal approximation s. As the name suggests, this ap-

proximation extracts the leading order "classical" behaviour of the system, and is only valid

when the de-Broglie wavelengths of the particles are small compared to the characteristic

scales of the motion. Explicitly, if we set

4} = clef�he -Igt/h (1.1)

the Schr_dinger equation gives

2 = vCx) 0.2)
: 2rrt

as the equation ofmotion foro'.The quasi-classicalapproximation isthat we drop the O(_)

term in (1.2),which clearlyrequiresthat [V_r[2 _;_ft]V2o'[.Ifwe identifythe momentum p

with _7_, we see automatically that the approximation isinvalidfor very small momenta,

i.e.in regions where E ,--U. Thus a classicalparticle at rest has no stationary quasi-

classicalcounterpart. However, what is perhaps lessobvious is that this approximation

also breaks down for more general turning points,when the momentum becomes parallel

to the potential.Wc willdiscuss thispoint in more detaillater.

In general, if we are given cq at some initial point xi, we may write the solution for cr

as

_r(x) = _x_ V_.dl + _rI (1.3)

where dl is any path interpolating between xi and x. This is all very well, but what is _Tcr?

The Schr6dinger equation is a scalar equation, relating the magnitude of XYcr to U, yet we
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presumably need to solveit throughout somemulti-dimensional region of space. Banks,

Bender and Wu9 solved this problem for the caseof tunnelling from a localised state in
more than one dimension. We will summarisetheir approach(and others1°) here, before

going on to discuss tunnelling from non-localised states.

Essentially, they treated (1.2) rather like a geodesic problem, setting Vo" oc dl, thus

making (1.3) a scalarintegral with respect to the length parameter along the path. This

requiresthat V_ has constant phase, and hence ispurely realor imaginary, the lattercase

corresponding to tunnelling. To solve this tunnelling problem, they set _ = ig and thus

obtain to lowest order in h

(vg)2= 2m(u- E) (1.4a)

_ = i J2m(U - E)dl, - (1.4_)

where I is the path which minimises the integral,the escape path, and x/ is the point

of emergence of that path into the classicalrdgime. In this case, it isclear how to solve

(1.4a) exactly,however a common alternate method, indispensible in fieldtheory, uses a

Euclldcan time description.

First we replace Pe = Vg in (1.4a),which yields

I 2 (1.5)
7_ = - 2--_p e + U = E.

This can then be interpreted as a Hamiltonian problem of particle motion in the (inverted)

potential -U. We then see that there is a non-trlvial solution, x('r), which interpolates

between the initial position of the particle and its position of emergence from the barrier.

With our Hamiltonian interpretation we identify _:(v) with Pc, and 7" is thought of as

a time parameter. The identificationof r as a Euclidean time comes from noting that

__./ = p = ipe=an i_(r), thus -r = it. Solving the Hamiltonian problem along the trajectory

gives:

-_(T)2+ u = E (1.6)-
2

hence

o-=--i/p.dl =-ifp._dv:i/2(U-E)dr.
(1.7)

The advantage of this approach is that it provides a straightforward means of calculat-

ing the escape path and action in terms of a classical mechanics problem, the disadvantage

is that it introduces a fictitious time parameter along that path which can introduce con-

ceptual confusion in trying to interpret what the 'particle' is 'doing'. For example, a



statementoften made is that because Euclidean time is somehow orthogonal _o real time,

tunnelling happens instantaneously; this is rather confusing. Tunnelling is a statement on

the dynamical evolution of the wave function according to quantum mechanics, whereas to

say "happens instantaneously" suggests an observation, i.e. an interaction with the system.

The only process one can label as tunnelling is the quantum mechanical leakage of proba-

bility across a barrier which is distinct from the path of a classical particle, and also distinct

from an observation of the particle on the other side. The actual question of tunnelling

time is an extremely subtle and complicated one (for a review see Hauge and Stovnengl]),

and to some extent depends on how one chooses to formulate it. However, what one can

say is that a probability density at time 40 + e at some point in space other than that at

which a particle was observed at time 40 is not a demonstration of instantaneous motion,

but rather a reflection of _he dynamics of the Schr_dinger equation.

Before going on to describe a more general approach to 'escape paths' we wiU make

the obvious remark (which Goncharev and Linde 12 discuss in more detail) that the stan-

dard Banks-Bender-Wu method requires that (Vg) 2 =/c 2 _ 0 at each end of the escape

path, otherwise the solution cannot be matched with a classical 'real time' solution in the

asymptotic regime. In the case of escape from a localised state, this can be guaranteed,

since one end of the escape path is necessarily fixed and the other end is varied freely to

find the minimum action, therefore we are free to set i 2 - 0 at each end. However, in a

more general scenario, such as channel-channel tunnelling, this need not be the case. Both

ends of the escape path can now be moved, and hence it requires tz0o initial conditions

(rather than one as in the previous case) to fix the start of the path. Thus, since our

equations of motion are second order, we have used hp our quota of boundary conditions,

and we just have to hope that in varying our other endpoint we 'hit lucky'. Unfortunately,

from (1.6) we see that _ -- VU along the path, thus if U is for example monotonically

increasing parallel to _he barrier, _ has a s_ricfly positive component in that direction.

Therefore _k2 can never be zero at both ends of any trajectory and the Banks-Bender-Wu

method is not applicable.

Another disadvantage of this approach is that it makes no allowance for the transport

of real momentum under a barrier. In the case of a continuous symmetry it is clear that such

transport does occur, since the extra degrees of freedom decouple from the problem, and

the wave function is merely a product of a tunnelling wave function with suitable transverse

momenta eigenfunctions. However, trying to incorporate this into a fully Euclidean picture

is not SO easy 1:]. And of course we have totally ignored the problem of picking an initial

position from which to integrate, since we can only localise a particle at the expense of

information about its momentum. We clearly need a more general picture of tunnelling.
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As wehave noted above,in the approach of Banks, Bender and XYu, we must take space

to be divided into regions in which V_r is entirely real or entirely imaginary; this is what

allows us to make the identification of V_r with some _("time"). Clearly we then need i

to vanish on the boundaries where Vcr changes from real to imaginary, but this obviously

means that we have restricted ourselves to a certain subset of problems. As we have seen,

it is not dli_cult to find a potential which does not fit into this subset. We must find

an approach which allows for complex momentum as well as dealing with the problem of

matching between classical and tunnelling r_gimes. This is what we will now develop.

2. Tunnelling with classical motion - general formalism.

We now turn to how we can modi£y the escape path techniques for more general poten-

tials. The class of potentials we will be interested in are ones which contain two channels

(or asymptotic regions) separated by some barrier in the 'z'-dlrection. We envisage that

this barrier has some arbitrary y-dependence, but that this is secondary to the height of

the barrier. Our main assumption, other than that of quasi-classlcality, is that this barrier

is always sufRciently high so that the division between 'classical' and 'tunnelling' motion

is clear, i.e. U >> E.

Recall that the essentialproblem of tunnelling with classicalmotion is twofold. First

the transitionfrom classicallyallowed to classicallyforbidden regimes is no longer char-

acterisedby real momentum becoming imaginary (or E .-_U): the momentum retains

both real and imaginary pieces. Secondly, because the 'momentum' isnow complex, the

evolution equations become more complicated. The firstpoint,deciding on matching con-

ditions_is crucial;we may fix (X7g)2 = 0 as we enter the barrier,but we must be able to

interpretemergent solutionswith non-zero V 9.

In order to deal with complex momentum in the quasl-classicalapproximation, we

rewrite (1.2) in terms of the real variables f and g, where _ -" f -b ig:

(v/p - (Vgp + = 2m(E - u)

2Vf.Vg- hV_f = 0,

(2.1a)

(2.1b)

this latter equation representing the constraint that the probability current, j = e-_'g/t'Vf,

is divergence free.

We now turn to the problem of matching conditions: where they should be applied, and

how to determine them. First let us describe how to identify a turning point. Physically,

the breakdown ot_ the quasi-classical condition occurs when the de-Broglie wavelength of

a particle becomes comparable to the physical scales of the potential. In problems where

the momentum changes from being totally real to totally imaginary (or vice versa), this
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is characterised by E ,,_ U. However, if we wish to allow simultaneous 'classical' evolution

with tunnelling (i.e. complex momenta) then we must be more specific about the quantum

to classical transition.

In the 'classical' rdgime we expect the variation of the phase of the wave function

to dominate, whereas in the tunnelling rdgime the variation of the amplitude should be

dominant. In each of these r_gimes, the quasi-classical condition breaks down when

IV.? ~ _[V_.! (2.2a)

in other words when

(Vf)2 "_ _V2f (2.2b)

(Vg) 2 ,,, tW2g.

These relations are satisfied either when Iv/I or IVgl are small, i.e. when E ,-- U, or when

iv /i or IV2gl become large, this latter situation occurring near generic turning points

of the motion, approximately when the momentum becomes essentially orthogonal to the

gradient of the potential. To see why this is, let us consider an incoming plane wave

scattering off some barrier. The integral curves of Vf trace out the path that a classical

particle would follow in that potential. The breakdown of the approximation occurs when

neighbouring, initially parallel, trajectories cross. (These can be either/-lines or g-llnes.)

The set of points where rays cross each other is referred to as a caustic and it is at these

points that the approximation breaks down due to V2f (or V2g) becoming unbounded.

(In the path integral language, as we pass through the caustic the path changes from a

minimum of the action, S, to a saddle point; that is one of the eigenvalues of 52S becomes

negative. In the expression for the propagator there is a term of the form (det 62S)-]

which diverges14.) The matching conditions should strictly be applied along the caustics

of the f or g curves. However, since the barrier is assumed to be slowly varying along its

length compared with its steepness, this actually coincides with the turning point of the

f-llne, when the momentum is orthogonal to VU.

The matching conditions in the situation E .-. Lr are the standard matching conditions,

that is, our initial conditions for integrating away from the turning point x0 are g = 0,

Vg = 0, Vf = 0 if matching from classical to tunnelling, and g = g(x/), Vg = 0, Vf = 0,

if matching from tunnelling to classical at x I. In the second case, where there is some

transverse momentum, then continuity of the wave function demands that the momentum

parallel to the barrier is preserved. If this momentum is entirely real (or imaginary) the

orthogonal part is matched as before. More precisely, the wave-function is given locally by

= Ai (2.3)



where Ai(z) is the Airy function. This gives an extra phase of e_ between the incident and

reflected wave, which is a generic feature at such turning points and can be traced back to

the change of phase in the determinant factor of the propagator caused by reversing one

of the eigenvalues of 5 2S.

In the ease where the incident wave has complex parallel momentum, ay + iby, we

might expect that

-  (ay i y)2
= h-2/ (2mU,.)I/3(z+ ) (2.4)

However, using the asymptotic expansion for the Airy function, we find that the momentum

of _b in the z-direction is given by the energy equation

+ + ib,)2= 2m(E- u(=)), (2.5)

hence ifay,bv _ 0 pffican never vanish. Returning to the functions f and g in equation

(2.1a),we see that whenever the distance between the f-curves scales as d along their

length, Vg scales as d-i, thus as we approach a 'caustic'of f-lines,d --_ 0 and Vg

diverges, unleJs it happens to be zero. We can therefore think of the (Vg) 2 term as

a repulsive potential between the f-lines,which provides a smooth transition between

differentrdgimes of our approximation.

In the examples that we consider the walls of the barrier are step-functions. In this

simpllfledsituation,we fixthe (possiblycomplex) parallelmomentum, and then compute

the momentum perpendicular to the barrier using equations (2.1a,b),choosing the solu-

tion corresponding to an exponentially decaying wave-function under the barrier and an

outgoing wave at the far side.In both cases,ifwc label the incoming and outgoing perpen-

dicular component of the (complex) momentum by/q and k0 respectively,then a trivial

calculationmatcln_ngt_e wave-function and itsderivativeat the boundary shows that the

reflectedand transmitted waves have cocfllclcntsrelativeto the incident wave of

kI -- ko 2ki

ki+ko' k[+ko
(2.6)

respectively.Normally, the wave reflectedfrom the incident decaying wave under the bar-

rlcrisonly an exponentially small correction (associatedwith multi-instanton solutions)to

the wave-function, and so isgenerally disregardedin what follows,although itisresponsible

for the very small but non-zero "tunnellingcomponent" of the probability current.

Now that wc have initialconditions for X7g and xyf under the barrier,and also at the

far edge of the barrier,let us turn to the equations of motion.
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Since we are assuming E (( U, Vg is clearly dominant under the barrier, however,

this does not mean that we can neglect Vf as an O(h) correction, otherwise we would use

existing techniques. Instead we want to consider a situation where h (( -_ (( 1, therefore

we adopt a step by step procedure in solving

(Vg) 2 = 2rrtU" -- (2rrtE -- (Vf) 2) (2.7a)

Vf.Vg=O, (2.7b)

beating in mind that (V f) 2, E are of the same order, and small compared with (Vg) 2, U.

The first step is to find the leading behaviour, that is, to solve

(Vg)2= 2mu. (2.s)

This is solved using the existing techniques: we use the momentum transfer equation

VvgV# - mvv" (2.9)

to find the integral curves of _rg, and then integrate the scalar g along them:

g = v%w ds (2.10)

This givesus the solutionto leading order. The next step isto use the initialconditions for

Vf to integrate(2.7b) through the barrier,since (2.7b)merely tellsus that f is constant

along g-lines: f = f(_0) where !/0 = _(z, V) are the integral curves of g. Finally, we input

this solution for f back in to (2.7a) to obtain the correct form of g to order E.

Now that we have a systematic method for solving underneath the barrier, an ap-

parently reasonable question to ask would be what the actual flows of the particles were

across the barrier. This, as it turns out, is a very dli_cult question to address, since it

tries to relate a classical notion (a path) to a classleally forbidden r_gime. Even setting

aside such interpretive reservations, we see that our solution as it ._tand_ cannot represent

tunnelling, since the probability current, j = e2g/h_Yf, is orthogonal to the integral curves

of g and can therefore never leave the turning point. Clearly our solution is incomplete,

since we know that particles do in fact tunnel, albeit with a very small amplitude. Let us

first highlight a 'trick' by which we may obtain the form of the probability current before

discussing its true origin and therefore limited interpretational value.

Consider first (2.1b) in one dimension. If we were to expand f in powers of h we

would conclude that f = 0. However if we directly solve (2.1b), we obtain

(2.11)

9



Thus, we find that as well as the zero solution, we also have a non-zero g-dependent phase

under the barrier. This suggests that in general the probability current along a 9-1]ne is

jT 0c Ke -2°(xt)la (2.12)

a constant. We also have an order of magnitude estimate of the phase change along a

g-lineas ttK, where K" is the outgoing momentum. Note that allthe phase change takes

place at the boundaries of the barrier,therefore to get the exact phase change wc should

look at the matching conditions. In the case of a step function,(2.6)implies

I 2kl [ 2kIA fT = O = arg ko + kl Nk° + kI F} (2.i3)

where the subscripts N and F refer to the near and far sides of the barrier respectively. An

obvious point which we will nonetheless make is that if a path does not emerge from under

a barrier, g increases without limit along that path, therefore the appropriate solution for

fT is the zero solution. This implies that no tunnelling can occur along such a path.

It would be nice to associate this probability current with the path of the particles,

however, this would be hopelessly incorrect. We can only associate the probability current

with a path if we have a single WKB-like wave function. Once we have a superposition

of wave functions, such as incoming and outgoing waves, the probability current only

represents a nett flow due to the interference between the various waves. In the case

of real momenta, we can directly sum the probability current associated with each wave

function to get the nett current. With complex momenta however, which unfortunately

is preciselywhat we are interested in, it is the interferencewhich gives the probability

current. Thus, although this trick which we have illustrateddoes extract a probability

current from a complex momentum wave function,the non-vanishing of this current relies

cruciallyon the existenceof a point of emergence for thiswave function into the classical

rdgime, and this isexactly equivalent to the existence of another, exponentially growing,

branch of the solution.As such VfT cannot bc interpreted as a flow of particlesunder the

barrier,but rather as a shorthand way of estimating the multi-instanton correctionswhich

does in factgive the correct order of magnitude for the tunncUing current (although it is

out by a factorof order unity).

Finally,before investigatinga few concrete examples, we should summarise the limits

to our approximation. First,we have assumed .E <_ U in order to facilitatethe solution

of (2.1) as an expansion in E/U. Our second main assumption involves the matching

conditions in terms of the local orthogonal coordinates along the caustic,thisrcqulrcs that
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the caustic not be too strongly curved which translates into a restriction on U, vy. From

(2.4) we see that the quasi-classical approximation is invalid for [z[ < h2/S(2mU,_ )-1/3.

This gives a rough order of magnitude limit U, tty< &-4D(2mU,.. )2/5, which one can sub-

stantiate with a more careful calculation. This shows that our turning point treatment is

generically valid. In practise, calculations/complexity will be the limiting factor for U, vy

- curved caustics are more dliTicult to deal with.

3. Plane wave scattering - examples.

In order to examine the flows of the wave function we first consider a steady state flux

of particles impinging on a variety of barriers, that is, _bi,t = em'xU'. We do this because

we no longer have localised quasi-classics/states in the direction of classics/motion. We

follow the wave function under the barrier end out into the second 'classical' regime. After

caleulatlng the form of the tunnelled wave function, we use the momentum eigenstates to

build the physically more realistic situation of a Gaussian wave packet hitting the barrier.

Thls more realistic scenario allows us to highlight the existing controversy of tunnelling

times for the square bs_n'ier, as well as illustrating some interesting new properties of more

geners/barriers.

To illustrate our techniques we have chosen three examples in order of increasing

complexity. We begin with the simplest possible two-dimensional potential - a separable

square barrier. This allows us to check our calculations against an exact solution, end

also leads naturally to the second example: a square barrier of varying width. Finally, we

consider a square barrier of fixed width and varying height. These latter two potentials

demonstrate some very peculiar scattering properties as we shall see.

Ezample 1: UCx)= vecz)eCa- z).

For thispotential we know the exact form of the stationary eigenfunctions:

¢(x) =

where

2 kP,

= [o+ +(,-
TeO:h z/_.

is the usual one-dimensional square barrier wave function, with

p 2 =2mE-p2 2 _2 =2mV-p 2

( zi p_ P_)sinhtca/h)T = e-_p,'_/t' eosh _a/h- -_(

z<O

O_zSa

z>a.

-I

(3.2)

(3.3)
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It will be convenientto rewrite this transmissioncoefficient as

T = 2P1_e-lP1"*lhe-_°/t* (3.4)
D

where

D 2 -- 4p12t¢ 2 Jr 4m2V 2 sinh 2 tca/_ (3.5)

gives some measure of the transition amplitude, and

O = tan_ 1 - Pl tanh (3.6)
2p, T

gives the 'transition phase'. This latter quantity is important in discussing some interpre-

tations of the tunnelling time.

For V >> E we see that

lea

D ,',, 2mV sinh --_- -_ rnVe ''/h (3.7a)

0 tan- 1 t¢ _r 2p, (3.7b)
2p_ 2 t¢

and hence

2p, t¢ e_,_alt, exp + (3.8)
T,'., mV tt 2

Comparing the transmitted solution with the incident solution, we see that the transmission

amplitude, [T[, is given approximately by 4P--_e-_" (having set _ ,-_ _) and that the

transmitted wave acquires a phase (_ - -_2+ 2P-g-r_'_ -

To solve the SchrSdinger equation using a quasi-classlcal approach is in thls case very

straightforward since U is a function of one variable only. The solution of (2.7a) to leading

order is g = v/2rrtVz. Equation (2.7b) then implies that f = p,y. Equation (2.7a) then

implies that g = x/2rn(V - E) Jr p2 2 z = tcz as required.

To solve in the asymptotic regime we note that since _Tg = 0 along z = a, g must be

a constant, gt, and therefore Vf returns to its original value (p,,p,). To find the phase

shift across the barrier, t9, we use (2.13) and obtain AfT = 19 : tan -1 _t,-v_t,in agreement

with (3.7b). Thus, integrating out from z = a, we obtain

g --- tea (3.9a)

f = + - a) + ho (3.9b)

in agreement with the exact solution.

12



Now wewill attempt to solve for potentials which have a small v-dependence included:

Ezample _: Us(x) = ve(z)e(a - z - _v).

This represents a barrier of constant height and varying thickness. Clearly, since our

initial conditions for integrating under the barrier are the same as for the first example,

the solution for / and g under the barrier is the same:

/ = p,v, g = _/2m(v - _) + p,_= = _ (3.10)

To find the solution in the asymptotic region, we must recall the boundary conditions to

be applied at the far edge of the barrier: V fit, _Tg u are preserved. Now, if we assume that

• <( 1, and only keep terms of order e, then the tangent and normal vectors to the far

surface are, respectively,

Therefore

(.)T= 1

Vg u =-et¢T and _Tft , = p,T.

We may then use equations (2.7a,b) in the asymptotic region to conclude that

(3.11)

(3.12)

L.. = p_(=-a + ev)+ p.Cv- ,(= -a)) + _o

= P_ + P2'l+ _0

Pt

(3.13a)

(3.z3b)

where

= z - a + ey (3.14)

and (9 = tan -1 2pt+_p, is given by (2.13). The solution for g in the asymptotic region

is now a function of *7 and _ (or z and V) This is in contrast to the previous example of

the square barrier. It is intuitively obvious that the the probability density decreases in

those regions where the barrier is thicker. The spatial variation of g will lead to interesting

phenomena when we come to discuss the scattering of a Gaussian wave-packet off this

potential in the next section.

E_a_pz_s: u3(x)= vl(x)e -_.
In this example we have a barrier of constant thickness, but varying height. The

matching conditions for a step-function give the initial conditions for integrating under
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the barrier:

vfl_=o+ = (o,v,)

Vgl,=o+= (__-_,o)

¢(o+,y) = e_ [ 2p, ]

(3.15)

The first step in solving equation (2.7a) is to find the integral curves of Vg. If we

write _ = Vg (cf Euclidean method) then by examining _ = VU we see that

_/2 = 2mV(e-CV _ dyo)

_2 = 2mVe-tYo .
(3.16)

The equation for the integral curves is therefore

This has solution

2
Y = Y0 + : log cos -- (3.18)

e 2

f_2

-- Yo -
4

this latter approximation being valid when ez << 1. Note that the form of the integral

curves is invariant along the barrier. The curves all asymptote the line ez = _r, so we
dz

will impose a < _r/e to ensure that (V f) 2 remains small. Now, for these curves, _ =

e-,(_o-y)/2 = cos_. Hence

g = v/5-ffds = v_-_-Ce -'v/2 sec -_dz

= ,/-2mVe_,yo/2 2 tan ez.
2

fX= __-','/' sin--. (3.19)
e 2

Having found the zeroth order solution for g, we must now apply (2.7b) to find f,

using f = p_y initially. From (2.7b) we see that f must be constant along integral curves

of g, hence

f = p,(y _ 2_ logcos-_-). (3.20).

14



2
From this we may deduce that (V f)2 = p, sec 2 _ and hence

2 _
(Vg) 2 -- 2rnVe-(V + P= sec 2

2
-- - 2mE. (3.21)

Now we find ourselves in the situation of having a modified equation for the integral curves

dz

(e-'(_-Yo) - 1)
2

1 - e _y° Jr P-_-e _y° sec 2
2mV 2

of Vg.

E e_VO p_=-V/e-'(v -vo)-I I+_ 4mV eeYO sec 2 _] •

(3.22)

Setting

2 e_
E eyo _ .e ey°tan

x = =(1 + ve ) 2_mv T ' (3.23)

we transform (3.22) back into (3.17), with z replaced by X. Hence

2 eX
y = y0 + - log cos (3.24)-T

are the new integral curves, and

g= _e -(y°/2sec-_- 1+ 2mV'' e_yods

( "X _.X . = eeYO_

= v/_--Ve -_v°/2 sac 2 _ 1 + 2rnV )
o

P; e_v sec
= _/r_-Ve-eV/2 sm -_- 1 -b 2rnV

dX

(3.25)

is the new g.

Having now verified the stability of our solution, for calculational brevity we will now

retain only the leading order parts of f and g in what follows. We must now match the

o_ all match continuously across thewave-function across = = a. We know that f,g, 88--_, or

boundary. In particular

0/
Oy = P2

(3.26)
(:gg _ v/_rn V e_ ,, . ea: Tsln--
coy 2
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at z = a +. Using our matching conditions, if we let Pz = (o°-_z + io_-_z) then

p_ = 2E - (p, - i_e-_ sin 2)2

_ 2 -_- + 2tp,_sm-_-e =- Pl + 2mVe-¢Usin2 ea . . ea _-,

(3.27)

There are two limits in which information can readily be extracted:

In this case the barrier is very slowly varying with respect to the other scales in the

problem (although not necessarily with respect to _), and the asymptotic r_glme is clearly

identified as (Vg) 2 ,(C (Vf) 2. Clearly we may take sin-_ --, ¢_2, so that to order _¢= we

•have

P= = Pl + leaP= _e-_ (3.28)
2Pt

Solving for y and g in the asymptotic region can be achieved by following the same

procedure as under the barrier. In this case we first solve for f trod then demand that g is

constant along the integral curves of Vf. This gives that

E(tf'-'px(z-a)+p,(y- logcos T)

g = (=-=)1.

(3.29a)

These expressions are valid in the region 1 >> e[y - e-r(z - a)] >> log e.
P,

Cb) <<sin 
In this case we have

• . Ca

p= _, _e-_ t sm-_- + ip, (3.30)

In this limit one can ignore the energy term in comparison with (V f) 2, (Vg) 2 and the

WKB equations for f, g become equivalent to the Cauchy-Pdemann equations. We can use

this to find an approximate solution for f and g in the region z > a. If g = g(a, y) and

f = f(a, y) on the boundary then letting z = y + i(_: - a) we may write

e(z -
g = Reg(a,z) + Imf(a,z) = 2_sineacos a) e-_ + p_(_: - a)

e 2 2

2 _--=__ _a e(z - a) e-V +p=(v - 2log cos 2)f = -Img(a,z) + Ref(a,z) = -_/2mYsin-_sin 2 e

(3.31)
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At this point let us make a few remarks on the form of this solution. Near the

barrier the wave-function dies off doubly exponentially rapidly as y _ -oo, where the

barrier is highest. This is not surprising since the barrier is exponentially rapidly growing

here. However what is interesting is that the solution does not seem to make Sense for

z ---, a + z-/e as g ---, 0 here, making the wave-function (doubly) exponentially enhanced

relative to its value near the barrier. Tiffs can be understood by looking at the integral

curves of Vf, which asymptote z = a + z'/e. As we approach this line, we cross integral

curves of Vf which emanated from z = a at larger and larger values of y, in particular

where V_-/U ~ ca, where approximation (b) is no longer valid. Thus the solution (3.31)

cannot be extrapolated to z ~ a + 1r/e, and can only be regarded as a solution close to

the barrier. However, it is interesting in that it deals with a r_gime in which the barrier is

rapidly varying in height.

4. Scattering of" Gausslan wave-packets

We are interested in understanding what happens when a classical particle scatters

off the sort of potentials we have been considering. So far, we have given a solution for

incoming plane waves scattering of[ such potentials. The linearity of SchrSdlnger's equation

enables us to add these solutions together in order to find time-dependent solutions. We

will be interested in considering solutions for which the incoming wave is a Gaussian

wave-packet, since this can be thought of as representing a classical particle. After some

introductory remarks we shall examine the solution for a Gaussian wave-packet scattering

of[ each of the potentials considered in the last section.

Briefly, we review Gaussian wave-packets to establish notation. Let us consider a

solution to the one-dlmenslonal Schr_dlnger equation, which at time _ -- 0 has the form

= • e-r- (4.1)

To find @(z, t) we first take the Fourier transform

Then we have that

• (z,t) = d(-_)F(-_)e', e _,',_,

t 1 _ [

= (2A)-_h- ,-r-'_A-¼ exp

F(k) = _ dz_lr-_ei(_-k)"e '''r'-

4h2A - 2rn----h+

(4.2)

(4.3)
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it This solution represents a Gaussian wave-packet with momentumwhere A = _ + 2--_E"
1 2

Pl. The wave-packet has < Az 2 >= 2h4A[A[ 2 and < Ak 2 >= 5Ah . The modulus of A is

smallest at t - 0 and at this time the wave'packet is minimal. The ware'packet begins to

spread appreciably for It[ > _.

People are generally interested in two types of wave packet: those extremely peaked in

momentum space ( % of order unity) and those equally spread in position and momentum

space (_ = O(h-1)). Notice that even in this latter category, the wave packets are still

very sharply (,_ _) peaked in momentum space. In the first case, the packet, although

comparatively diffuse in z-space, maintains its shape for t < _-1, whereas in the second

case, the packet starts to spread for t of order unity (although the spread is still of order

h); this is quite sufficient. We will therefore assume that Ah is at most of order unity.

In the previous section we obtained the solution for a plane wave scattering Qff three

different potentials, what is now required is that we take the appropriate linear combina-

tions of these solutions so that the composite describes an incident wave-packet which can

be interpreted as a classical particle. This is simply a product of the solutions described

above; that is

+(y---)'2h2Av/__e exp 4_A (z Pit 2 izpl i

(4.4)

I [p2where E = _ _ 3 + P_)" This describes a wave packet with momentum (p_, P2) hitting the

origin at t = 0. The momentum profile of the wave-functlon has the form

__ k2 1 e- 2_--_ [(_-p,)' +(_,-p,)'] (4.5)F( 'T ) =

In order to find the emergent wave-function we integrate

@_(z,y,t) = dk, dk2F( ,-_-)¢out(ki,z,y)e '_" (4.6)

where

¢out _ ei(Y°u*+igo_t)

is the approximate form of the outgoing wave function calculated in section three. _Ve may

write this integral in the form

1 /'t
ffAE(Z, y, t) -- ]] dkldk2e h/h

2rh2 v/'_ JJ

(4.s)
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where
1 if

) -- __k 2 .A(_)v)k, k,,t) = ifou, - gou,- 2-_(k, - v,)_ 2m , (4.9)

We use a saddle point method to calculate this integral making the exponent stationary

with respect to k t, k 2. We are interested in the trajectory of the peak of the wave packet,

the position of which is given by VReA -- 0. We then use the set of equations

0A
-- -- 0 (4.10a)
Ok,

VReA ----0 (4.10b)

to determine the trajectory of the outgoing wave packet.

Having now outlined the general procedure, let us return to our three examples) in-

vestigating the behaviour of a Gaussian wave packet as it hits each in turn.

Ez,,_ple 1: V(x)= VO(-)O(a- z).

Here we substitute in (4.6) the outgoing wave function from equation (3.2):

¢o.t = T(_,)e ik'_/h (4A1)

where T is the transmission coefllclent in eq(3.3b). Integrating over/% merely inverts the

Fourier transform in the y-direction since T is independent of y and the integral over the

z-momentum is peaked about some k. close to ga << U. We therefore approximate T by

T(kl)'_2k"_(k')exp{-i-_a-'(_ I)rnV iO(kl) }h " (4.12)

This now simplifies the expression (4.9) for the exponent:

A(z,t, ka)=ika(z-a)- 1 (kl-pl)' it k2_xa_iO(kl) (4.13)_-_ -_--_1 .

Using the saddle-point approximation we expect that

1 p2t)2 ip2y
ip;t "t
2rnh ; e a

(4.14)

where

OA k==i(;__a)_ ____(k _px)__° = b-_
ik_t ak,

+ -iO'(k_)
rn X/2rnV - k_ 2

(4.15)
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In order to find the trajectory of the peak of the emergent wave packet, we combine this

information with (4.10b) (which simply reduces to Imk r- = 0). Doing this, we find that

along the peak

=. + e' + k;--2 (4.16)
77_

where k_, the momentum of the peak, is determined by the real part of (4.11), which we

may expand to order V/-E"/V to obtain

k'=vl I+/_T ) (4.17)

This, together with the equation giving the peak in the !t-directlonwhich isobviously

_/-- P-_ suggests that the peak emerges at time te -- -O'rn/k_ --O(h) at (a,?-_g-_ and

travelssubsequently in a straightllne.

We have been deliberatelyobscure about the actual value of O _ (and hence re) since

itwould be misleading to advertisethisas the actualtunnelling time when there isconsid-

erable debate on thistopic11,indeed, as we shallsee in the next two exaxnplcs,taking this

quantity seriouslyas a tunnelling time would lead to some intcrestlngphysical clilcmmas.

This time is called the phase timeas,Inof the tunnelling process, and is reallyonly well

defined asymptotically, well after the scatterlng/tunnellingprocess has been completed.

One way of seeing why thismust be so is to recallthat the distortionsof the wave packet

closeto the barriermake 'definitions'such as 'when the particlehitsthe barrier'subjective

at best, meaningless at worst. Our reason forincluding thisterm istwofold. First we wish

to emphasise the physical,quantum mechanical nature of tunnelling.Secondly, in the next

two examples, we findfactorsin te due to the variationof the potential and we wouM like

to compare the two factors.

E,ample _: U,(x) = VO(-.)oCa- • + _U)-

Having worked through the firstexample in some detail,we now summarise the steps

for this example. Using (3.13), we may write the exponent (4.9) as

.._ + _,_.- v--_,_+ i(k,_ + k,,7+ oh). (4.1s)
2Ah 2m xt

where _ and 77 are given by (3.15).

the two (complex) equations:

_hCk--V,)- _ k- +

Making this stationary with respect to the k, yields

+ i(v + e,2h) = 0

(4.19)
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For the trajectory o£ the wave packet we use (4.10b) and (4.18) to find

Imk[ = -eRe-zT- (4.20a)
k=

Imk_ = eRe_:. (4.20b)

Now we have a situation in which the momentum dominating the integral is complex.

Writing k" for Rek', and substituting from (4.20) for Imk;, and similarly for k_, the

equations for the emergent wave peak can be seen to be

= -ca _ + +_ (4.21b)
Tn

where

Ah

k: =pz (1+_-) (4.22b)

' (4.22c)kV = P2

Thus we see that the packet emerges from under the barrier at a time and displacement

given by

(4.23a)

(4.23b)

subsequemly travelling along the straight llne

= _ + _ 1+ _(I-_Aa/.)+ (4.23c)

with a damping relative to the incident Gaussian of

e-'{*-'..]/h _ e-"**,/_. (4.23d)
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There are several interesting differences with the previous example. The first is that

the tl,-_]]iug time can now be negative! This peculiarity arises for a simple physical

reason, the fact that the most energetically favourable time for the Gaussian to tunnel is not

necessarily when the peak hits the barrier. Tunnelling amplitudes depend exponentially

on the size of the barrier, therefore it is more favourable to tunnel when the barrier is

thinner or lower. On the other hand, the probability density along z - 0 is damped by

an exponential factor depending upon how far away that point is from the peak of the

Gaussian. Clearly there will be a pay off between these two factors which may mean that

it is more energetically favourable for the fringe of the Gaussian to tunnel, rather than its

peak.

The second thing to notice is that the wave packet emerges on the other side of

the barrier at _ = _e, somewhat 'downstream' of where one might expect it. The two

possibilities for emergence would be the perpendiculars from either the start of the barrier,

or its end, that is, U - 0 or 17 = ae. Neither of these naive choices are equal to %. This

shift has the same physical origin as the unusual _e.

Finally, we should remark that the incoming and outgoing momentum are not quite

parallel, since the (z,y) and (_,_) coordinate systems do not quite coincide.

s: V'3(x)=
We shall now discuss the problem of scattering a Gaussian wave-packet off a barrier

of variable height. This problem is much closer to the sort found in initationa.,'y models.

As before, the emergent wave-function will be the superposition

_BCz,Y,t) = dk_d,_.,F C_-, )_outCk,, z,yje-_-T (4.24)

where we include the factor of e:P_ "_ so that the wave packet hits the barrier at (0,V0)

rather than the origin. Recall _bo,t was calculated in two separate limits. We now calculate

the outgoing peak trajectory in each case.

In this case, from (3.29), we find that A is equal to

A _..

(k, - p, )2
2A/t

_a - _a e- _[v-,Io- _ (,,-")1itk'2_,:(k,(:_-_zl+k,(V-V0 21ogcos ))' T
(4.25)
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Making this stationary with respect to the k, gives

__ it k 2 log cos ea ca (CA,,-r,,)-_ ,,+i(_,-; -_-)+__ 1 =-°) =o

(4.261

As before, we use (4.10b) to find the trajectory of the peak of the wave packet

(4.27a)

(4.27b)

Again, the momentum dominating the integral is complex. Writing k_ for Rek_ etc. as

before, the equations for the emergent wave peak can be seen to be

F

(=-=)= A;__2_+ _
Tw k=

Y'-Y0+ log cos-_-+_m +_

(4.28a)

where

eav_rn V
5-

2A_

, eaAtl ,-- _
k v = p= + --_ x/2mV

(4.29a)

(4.29b)

(4.29c)

Therefore the packet emerges from under the barrier at

m_k_
A_

y, = y0 + - log cos + _ 1 +, 75-

(4.30a)

(4.30b)

subsequently travellingalong the straightline

y=y0+-Iogcos + (m-a)+8 I+A_ (4.30c)
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with a damping relative to the incident Gaussian of

e_V_'_V,.e- t,./_. (4.30d)

Thus, as in the previous example, the tunnelling time once more can be negative (for the

same reason) and the peak of the transmitted wave packet emerges somewhat downstream

from where we might have expected.

In this case, from (3.31), we obtain

A _2 sin ea ,.(,+,(.-., 2 ea- --e , +ik,(_j-_o--1ogcos-_+i(z-a))
• 2

- w) 2 ik t
2A_ 2m

(4.31)

Using saddle-point methods to evaluate this integral we arrive at the solution

Y = _#o+ - log cos + e-_ _ sin -]- cos - + -- sine "]" m

z = a + _-_ + e- _ _ sin-_- - sin 2 + --mcos

(4.32)

so that the peak emerges at z = ¢ at a time and position given by

p2e'y/2 (4.33cz)
t, = A1tx/'2"mTsin_

2

2 e(z e-_ _ e_z (4.33b)Y, -"7/0+ - log cos + sin--e 2

As in the previous examples there are three terms which contribute to the value of y at

which the particle emerges: its initial position, the shift to this due to the curvature of the

V9 integral curves under the barrier end a term which depends on the spread A. Again,

the time at which the peak emerges can be positive or negative depending on the sign of

P3 °

5. Conclusions.

In this paper we have generalised existing methods for caiculating tunnelling processes

to allow for complex momentum. This allows us to calculate tunnelling amplitudes in a

wider class of potentials. We started by reviewing the BBW approach, then described

how to generalisethis to include complex momentum. The problem of solving under the
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barrier was made tractable by assuming that the energy of the wave function was small

compared with the height of the barrier. The matching conditions we derived by imposing

continuity of the wave function allowed us to transport real momentum under the barrier

and imaginary momentum beyond.

In section 3 we applied this method to three examples: a square barrier for which

we knew the exact solution, a step function of varying width, and then one of varying

height. We found that the outgoing momentum was not necessarily parallel to the incoming

momentum, a feature that we expect for generic barriers. Examining the scattering of

Gaussians against these barriers allowed us to follow a wave packet tunnelling; probably a

more realistic physical scenario. In recapping the square barrier case, we could illustrate

the origin of one definition of tunnelling time, the phase time. We used this to explore the

effect of barrier variation. This, as it turned out, was quite significant. Both in the ease of

the step barrier with varying height and that of varying width we found large corrections

to _e and a shift in the place of emergence of the wave packet into the asymptotic rggime.

These turned out to have a simple physical origin. It is incorrect to assume that it is

the peak of the incoming packet that dominates the emergent wave-functlon, and that

tunnelling takes place when this peak is next to the barrier. Tunnelling is an exponentially

suppressed phenomenon, and therefore it is far more favourable to tunnel where the barrier

is smaller, even if the impinging probability density there is not a maximum.

The last two examples we considered suggest that the definition of 'phase time' as

it stands is not a good definition of tunnelling time since it assumes that the tunnelling

process starts when the peak hits the barrier. It is possible that some modification of this

description would give sensible results, compatible with the uncertainty principle for energy

and time, although such a modification would naturally weaken the status of phase time.

Unfortunately, we are not able to shed any light on whether some alternative definitions

of tunnelling times 17-19 are any better.

We restricted ourselves to the examples discussed since they illustrate the salient fea-

tures of multl-dimenslonal tunnelling without too great calculatlonal complexity. However,

it was the cosmological applications of complex momentum tunnelling that originally inter-

ested us, and these involve tunnelling processes from semi-localised states in field theory.

The problem of calculating a tunnelling rate from a state localised in the z-direction should

represent one step up in complexity from our examples and is currently being calculated.

The problem of applying these ideas to field theory would involve translating the tech-

niques presented here into the functional Schr/Sdinger picture. This may prove to be very

problematic, although clearly that is the next step in solving the two field problem.
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